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Abstract
Colloidal suspensions and polyelectrolyte solutions containing multivalent
counterions can exhibit some very counter-intuitive behaviour usually
associated with low-temperature physics. There are two particularly striking
phenomena resulting from strong electrostatic correlations. One is the
like-charge attraction and the second is the polyion overcharging. In
this contribution we will concentrate on the problem of overcharging. In
particular, we will explore the kinetic limitation to colloidal charge inversion
in suspensions containing multivalent counterions.

PACS numbers: 41.20.Cv, 82.70.Dd, 82.35.Rs

1. Introduction

Colloidal suspensions and polyelectrolyte solutions containing multivalent counterions can
exhibit some very curious electrostatic behaviour [1]. It is found that under some circumstances
two like-charged polyions inside a suspension can actually attract one another [2–16]. The
counterion-mediated attraction is responsible for DNA compaction inside bacteriophages,
viruses that infect bacteria [17, 18], and for the organization of the eukaryotic cytoskeleton
[19]. Another ‘strange’ electrostatic behaviour which can occur in suspensions containing
multivalent counterions is the reversal of the electrophoretic mobility [1, 20–25]. The first
thing that is learned in a course on electrostatics is that the force produced by the electric field
on a charged particle is

F = QE. (1)

Thus, a positively charged particle, Q > 0, is expected to move in the direction of the
applied field while a negatively charged particle, Q < 0, will move in the direction opposite
to the field. This simple picture, however, breaks down inside a colloidal suspension of
low dielectric solvent or even in aqueous suspensions containing multivalent counterions. The
reason for the violation of the ‘simple’ physics learned in high school is the strong electrostatic
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many-body interactions between the colloidal particles and the counterions. The reversal of
the electrophoretic mobility can be understood as a combination of two electrostatically
driven mechanisms. Strong electrostatic interaction between colloids and counterions leads
to the formation of polyion–counterion complexes [26–28]. The existence of counterion
condensation has been known for over 30 years [29–31]; the general phenomenon is, however,
much older than this and can be traced to the pioneering work of Bjerrum on ionic association
inside electrolyte solutions almost 80 years ago [32]. In aqueous suspensions with only
monovalent counterions, the net charge of complexes is of the same sign as the bare charge of
the polyions.

If the solvent is water and the counterions are monovalent, the electrostatic interactions
between the condensed counterions can be neglected [1], and the simplest Poisson–Boltzmann
theory is sufficient to describe the polyion–counterion complexation [26, 33, 34]. In aqueous
suspensions containing multivalent counterions or in suspension of low dielectric solvents, the
electrostatic energy between the condensed counterions is significantly larger than the thermal
energy and the electrostatic correlations between the condensed counterions can no longer
be neglected. These electrostatic correlations can lead to colloidal overcharging, i.e. the net
charge of the complex is of opposite sign to the charge of the bare polyion. The overcharged
colloid will then move in the ‘wrong’ direction with respect to the applied electric field
[1, 25].

2. Overcharging

To understand the phenomenon of overchargingwe shall start by studying a very simple model.
Consider a sphere of radius a and fixed charge −Zq distributed uniformly over its surface. We
would like to know how many point-like α-valent counterions, each of charge αq , should be
placed on top of this sphere in order to minimize the total electrostatic free energy [1, 22, 24,
35]. When we say ‘counterions’ we have in mind both simple multivalent ions such as Ca2+,
as well as more complicated micelle-like aggregates with α significantly higher than one.

The free energy of a complex can be written as

En = Z2q2

2εa
− Zαnq2

εa
+ Fαα

n . (2)

The first term is the self-energy of the charged sphere, the second term is the electrostatic
energy of interaction between the sphere and n condensed α-ions, and the last term is the
electrostatic energy of repulsion between the condensed counterions. To calculate the free
energy of repulsion, it is convenient to express Fαα

n in terms of the free energy of a one-
component plasma (OCP), n α-ions on the surface of a sphere with a uniform neutralizing
background, F OCP

n . The free energy of a spherical OCP can be written as

F OCP
n = Fαα

n − α2n2q2

εa
+

α2n2q2

2εa
. (3)

Substituting equation (3) into equation (2), the electrostatic free energy of a polyion–counterion
complex becomes

En = (Z − αn)2q2

2εa
+ F OCP

n . (4)

In the strong coupling limit, corresponding to multivalent counterions or solvents of low
dielectric permittivity, the free energy of the OCP is well approximated by the free energy of
the low-temperature phase corresponding to a triangular Wigner crystal,

F OCP
n = −M

α2q2n3/2

2εa
(5)
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where M is the Madelung constant. For weaker couplings, the expression for the F OCP
n can be

obtained from the fits to the Monte Carlo data [36]. For concreteness we shall use M = 1.106,
the value appropriate for a planar Wigner crystal [1].

The effective charge of a polyion–counterion complex, in units of −q , is

Zeff = Z − αn. (6)

The optimum number of condensed counterions n∗ is determined from the minimization of
the total electrostatic free energy. We find [1, 22, 24]

Z∗
eff = −1 +

√
1 + 4γ 2Z

2γ 2
≈ −

√
Z

γ
(7)

where

γ = 4

3M
√

α
. (8)

The optimal charge of a polyion–counterion complex is of opposite sign to the bare
colloidal charge, i.e. the complex is overcharged. Inside the colloidal suspension containing
multivalent counterions or solvents of low dielectric permittivity, the electrophoretic mobility
can, therefore, be reversed.

Some care, however, must be taken in extrapolating the results of this simple model to
real systems. While we have treated the counterions as condensed on top of the sphere, this
is clearly not the case for a real colloidal suspension. Instead, the associated counterions
form a layer around a colloidal particle which can be some nanometres wide. The presence
of a simple electrolyte also strongly affects the net charge of the polyion–α-ion complex
[1]. Furthermore, the complex formation is a kinetic phenomenon requiring a counterion to
overcome an energy barrier in order to join the already overcharged complex.

3. Kinetics of overcharging

In the previous section we have found that the minimum of the total electrostatic free energy of
a polyion–α-ion complex corresponds to an overcharged state. However, for a counterion to
join an already overcharged complex it must overcome an energy barrier. The waiting time for
a thermal fluctuation of sufficient strength necessary to drive a counterion over an activation
barrier scales exponentially with the height of the barrier. There is, therefore, a kinetic
limitation to the degree of overcharging which can prevent a thermodynamically optimum
state from being reached on an experimental timescale. To explore this further we have to
construct an effective interaction potential between a complex and a counterion separated by
distance r.

The work necessary to bring a counterion from infinity to join a complex containing n
α-ions is

W = dEn

dn
. (9)

We define the reduced electrostatic potential of a counterion on the surface of the complex as
ϕ(a) = βW , where β = 1/kBT . Differentiating equation (4) we find

ϕ(a) = − (Z − αn)λBα

a
− 3Mα2√n

4a
(10)

where λB = q2/εkBT . The first term of equation (10) is the electrostatic energy of
interaction between a uniform spherical charge and an α-ion, while the second term is due
to electrostatic correlations between the α-ions. We note that the correlational contribution
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used in equation (10) is correct only in the limit of strong electrostatic interactions between
the condensed counterions, i.e. when the entropic contribution to the total free energy can
be neglected. A more accurate approximation would be to use the full expression for
the electrostatic free energy of the two-dimensional OCP obtained from the Monte Carlo
simulations [36]. This, however, presents an unnecessary complication at the level of our
semi-quantitative discussion. In addition, for weaker couplings, the simplified picture of a
quasi-two-dimensional sheath of condensed counterions will probably break down, requiring
a more careful analysis of the double layer. We will, therefore, restrict our analysis to the
strong coupling limit. Under these conditions the correlational contribution to the interaction
potential decays exponentially fast with the separation from the polyion surface [7, 15, 37].
The characteristic length is set by the average separation between the condensed counterions.
More specifically, we can approximate the reduced interaction potential by

ϕ(r) = − (Z − αn)λBα

r
− 3Mα2√n

4a
e−(r−a)/ξ . (11)

The decay of the correlational contribution is governed by the characteristic length ξ which in
the strong coupling limit is well approximated by [7, 15, 37]

ξ = 1

|G| (12)

where G is the reciprocal lattice vector of a triangular Wigner crystal of condensed counterions.
Due to strong coupling between the condensed counterions, equation (12) should remain a
good approximation even significantly above the crystallization temperature. For a triangular
Wigner crystal,

|G| = 4π√
3b

(13)

where b is the lattice spacing

b = 1

31/4
√

σ
(14)

and σ = n/4πa2 is the surface density of condensed counterions. Substituting equations (13)
and (14) into equation (12), the decay length is found to be

ξ = 31/4

2
√

π

a√
n
. (15)

For n < Z/α, the electrostatic potential between a counterion and a complex is purely
attractive favouring further counterion condensation. Inside an electrolyte solution this
tendency towards polyion–counterion association is opposed by the loss of entropy resulting
from the confinement of condensed counterions near the colloidal surface. Here, however, we
shall not be concerned with the role of entropy [1].

For n > Z/α the interaction potential has two minima, one located at r = a and the
second at r = ∞. For Z/α < n < n∗ the r = a minimum is the dominant one, while
for n > n∗ the global minimum changes to r = ∞. The value of n∗ corresponds to the
number of condensed counterions which minimize the electrostatic free energy of the complex
equation (4),

n∗ = Z − Z∗
eff

α
. (16)

In the case of trivalent counterions the energy barrier that a counterion needs to overcome
in order to join a complex which already contains n∗ condensed α-ions is less than 2kBT
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Figure 1. The reduced interaction potential between a complex with Z = 4000, a = 1000 Å, n =
n∗—given by equations (13)—condensed trivalent counterions, and a trivalent counterion located
at distance r from the centre of colloid.
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Figure 2. The height of the activation barrier that an α-ion must overcome to join an optimally
overcharged complex composed of a colloid with Z = 4000, a = 1000 Å and n = n∗ condensed
α-ions.

(figure 1). Thus, for trivalent counterions there is no kinetic hindrance to reaching the
optimum overcharged state.

We next look at the height of the activation barrier as a function of the counterion valence
(figure 2). It is clear that the height of the activation barrier grows rapidly with the increased
valence of the α-ions. In particular, we see that for α = 10 the activation barrier is already
some 10kBT which is probably the maximum height that a counterion can overcome on a
reasonable experimental timescale. Thus, the process of overcharging by the α-ions with
α > 10 will be kinetically controlled. For example, from equation (7) we see that the optimal
state of overcharging of a colloidal particle of Z = 4000 and radius a = 1000 Å by micelles
with α = 25 corresponds to Z∗

eff = −271. In practice, though, the process of overcharging
will come to a stop when the barrier height reaches about 10kBT , implying that the complex
will stop growing when the net charge is only Zeff = −70.
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4. Conclusion

In this contribution we have explored the kinetic limitation to overcharging. We find that
kinetics does not play an important role for overcharging by simple multivalent counterions,
so that the state of optimal overcharging, equation (7), is accessible within an experimental
timescale. On the other hand, we find that the activation barrier grows rapidly with the valence
of counterions, suggesting that the extent of overcharging by micelle-like aggregates is largely
kinetically controlled.

The kinetic limitation to overcharging might also be important for the formation of DNA–
cationic lipid complexes. The problem of a reliable and safe mechanism for gene delivery is
particularly pressing in view of the current medical applications. Strong electrostatic repulsion
between DNA and a cellular membrane inhibits transfection of naked DNA into a cell. A way
to overcome this difficulty is through the formation of overcharged complexes between DNA
and cationic liposomes [38–42]. These lipoplexes having a net positive charge are attracted to
the cellular membrane, facilitating the genetic transfection.

The presence of a simple electrolyte will also have a strong influence on the overcharging.
It has been demonstrated that for sufficient concentration of α-ions, monovalent salt favours
overcharging [1, 43]. In fact, in the presence of a simple electrolyte the thermodynamic state
of optimum overcharging corresponds to the charge inversion of as much as 100%. This
should be contrasted with the result of equation (7), which shows that in the absence of salt,
the effective charge of a complex scales as the square root of the bare charge. Salt will also
lower the height of the activation barrier reducing the kinetic hindrance to overcharging.

The thermal fluctuations inside a colloidal suspension can result in a state in which some
polyions are undercharged [44]. Although, the global free energy minimum corresponds to all
colloids being overcharged, the overcharged–undercharged configurations are metastable and
can lead to long-range attractions and colloidal phase separation. It should be very interesting
to measure the life times of these metastabel states inside bulk suspensions. This should be
possible to do using the Monte Carlo simulations [45].

Finally, near the isoelectric point where the net colloidal charge is close to zero, the van der
Waals interactions become once again very important. The kinetics of macroion coagulation
induced by the multivalent counterions has recently been studied in [46].
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